The Direct Discontinuous Galerkin (DDG) Method for Diffusion with Interface Corrections

نویسندگان

  • Hailiang Liu
  • Jue Yan
  • Chi-Wang Shu
چکیده

Based on a novel numerical flux involving jumps of even order derivatives of the numerical solution, a direct discontinuous Galerkin (DDG) method for diffusion problems was introduced in [H. Liu and J. Yan, SIAM J. Numer. Anal. 47(1) (2009), 475-698]. In this work, we show that higher order (k≥4) derivatives in the numerical flux can be avoided if some interface corrections are included in the weak formulation of the DDG method; still the jump of 2nd order derivatives is shown to be important for the method to be efficient with a fixed penalty parameter for all pk elements. The refined DDG method with such numerical fluxes enjoys the optimal (k+1)th order of accuracy. The developed method is also extended to solve convection diffusion problems in both oneand two-dimensional settings. A series of numerical tests are presented to demonstrate the high order accuracy of the method. AMS subject classifications: 35K05, 35K15, 65N12, 65N30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations

In this paper we present Fourier type error analysis on the recent four discontinuous Galerkin methods for diffusion equations, namely the direct discontinuous Galerkin (DDG) method (Liu and Yan in SIAM J. Numer. Anal. 47(1):475–698, 2009); the DDG method with interface corrections (Liu and Yan in Commun. Comput. Phys. 8(3):541–564, 2010); and the DDG method with symmetric structure (Vidden and...

متن کامل

The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems

A new discontinuous Galerkin finite element method for solving diffusion problems is introduced. Unlike the traditional LDG method, the scheme, called the direct discontinuous Galerkin (DDG) method, is based on the direct weak formulation for solutions of parabolic equations in each computational cell, and let cells communicate via the numerical flux ûx ONLY. We propose a general numerical flux...

متن کامل

Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations

This paper is concerned with superconvergence properties of the direct discontinuous Galerkin (DDG) method for one-dimensional linear convection-diffusion equations. We prove, under some suitable choice of numerical fluxes and initial discretization, a 2k-th and (k + 2) -th order superconvergence rate of the DDG approximation at nodes and Lobatto points, respectively, and a (k + 1) -th order of...

متن کامل

Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations

Abstract. In this paper, we present the optimal L2-error estimate ofO(hk+1) for polynomial elements of degree k of the semidiscrete direct discontinuous Galerkin method for convection-diffusion equations. The main technical difficulty lies in the control of the inter-element jump terms which arise because of the convection and the discontinuous nature of numerical solutions. The main idea is to...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010